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Abstract. A polydisperse suspension is a mixture of a number N of species of small solid
particles, which may differ in size or density, dispersed in viscous fluid. The sedimentation of such a
mixture gives rise to the segregation of species and flow of the mixture due to density fluctuations. In
two space dimensions, and for equal-density particles, this process can be described by a hyperbolic
system of N nonlinear conservation laws for the particle volume fractions coupled with a version of the
Stokes system for the volume-averaged flow field of the mixture. A second-order numerical scheme for
this transport-flow model is formulated by combining a finite-difference approximation of the Stokes
system with a finite volume (FV) scheme for the transport equations, both defined on a Cartesian grid
on a rectangular domain. The FV scheme is based on a central weighted essentially non-oscillatory
(CWENO) reconstruction [M. J. Castro and M. Semplice, Int. J. Numer. Methods Fluids, 89
(2019), pp. 304–325] applied to the first-order local Lax-Friedrichs (LLF) numerical flux. By the
application of scaling limiters to the CWENO reconstruction polynomials (following [X. Zhang and
C.-W. Shu, J. Comput. Phys., 229 (2010), pp. 3091–3120]) and utilizing that the Stokes solver
generates a discretely divergence-free (DDF) velocity field, one can prove that the FV scheme has
the invariant region preserving (IRP) property, i.e., the volume fractions are nonnegative and sum
up at most to a set maximum value. Numerical examples illustrate the model and the scheme.

Key words. Coupled transport-flow problem, system of conservation laws, Stokes system, sedi-
mentation, CWENO reconstruction, discretely divergence-free velocity, invariant region preservation.
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1. Introduction.

1.1. Scope. We are interested in high-order finite volume schemes for coupled
transport-flow models of the following form, where Φ := (ϕ1, . . . , ϕN )T:

∂tϕl +∇ ·
(
ϕlq + fl(Φ)k

)
= 0, fl(Φ) = ϕlvl(Φ), l = 1, . . . , N ;(1.1a)

−∇ ·
(
µ(ϕ)ε(q)

)
+∇p = g(ϕ), ε(q) :=

1

2
(∇q + (∇q)T),(1.1b)

∇ · q = 0,(1.1c)

where ϕ := ϕ1 + · · ·+ ϕN , posed on a rectangular domain Ω := (xa, xb)× (ya, yb) for
t > 0, along with the initial and boundary conditions

Φ(x, 0) = Φ0(x) for all x ∈ Ω, where Φ0 := (ϕ1,0, . . . , ϕN,0)
T,(1.2)

q = 0 and (fl(Φ)k) · n = 0, l = 1, . . . , N, on ∂Ω,(1.3) ∫
Ω

p(x, t) dx = 0 for all t ≥ 0.(1.4)
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The system (1.1) arises as a model of sedimentation of a polydisperse suspension of
N species of solid particles with diameters d1 ≥ · · · ≥ dN and densities ρ1, . . . , ρN
dispersed in a viscous fluid. Here ϕl is the sought volume fraction of species l (having
diameter dl and density ρl) as a function of spatial position x and time t. Other un-
knowns are the volume-averaged velocity of the mixture q = q(x, t) and the pressure
p = p(x, t). The vector k is the downward-pointing unit vector, and v1(Φ), . . . , vN (Φ)
are given velocity functions that describe segregation, that is, the local movement of
particle species l with respect to the mixture. A common choice of these functions or
equivalently, of the flux vector f(Φ) := (f1(Φ), . . . , fN (Φ))T, is the Masliyah-Lockett-
Bassoon (MLB) model of polydisperse sedimentation [26,27]. Furthermore, we assume
that the viscosity µ = µ(ϕ) of the mixture is a function of the total solids fraction ϕ,
and g(ϕ) is a term describing the density fluctuations of the mixture. (The model
ingredients will be stated precisely in Section 2.) Notice that the system of conser-
vation laws (1.1a) is a transport equation for the solid species and (1.1b), (1.1c) is
a version of the Stokes system describing the motion of the mixture. The transport
and the flow equations are strongly coupled since q arises as a transport velocity in
(1.1a), and at the same time, the functions µ and g arising in (1.1b) depend on ϕ.

It is the purpose of this contribution to introduce a numerical scheme for the
approximation of (1.1)–(1.4) that is second-order accurate in space and time, and
that has the so-called invariant region preservation (IRP) property, which means that
if the discretized initial datum Φ0 belongs to the set of physically relevant values

D :=
{
(ϕ1, . . . , ϕN )T ∈ RN : ϕ1 ≥ 0, . . . , ϕN ≥ 0, ϕ := ϕ1 + · · ·+ ϕN ≤ ϕmax

}
,

then the discrete solution vectors Φ take values inD at all times. The scheme is defined
on a Cartesian grid on Ω and is based on alternating between a finite-difference (FD)
discretization for (1.1b), (1.1c) and a finite volume (FV) scheme for (1.1a). The FV
scheme employs the first-order local Lax-Friedrichs (LLF) numerical flux combined
with a central weighted essentially non-oscillatory (CWENO) reconstruction [10]. The
IRP property is proven directly for the LLF scheme and remains valid for the CWENO
reconstruction through the application of scaling limiters (akin to those introduced
in [34, 35]). The main novelty is the application of positivity-preserving and bound-
preserving high-order discretizations to a coupled transport-flow problem where the
transport part is a nonlinear system of conservation laws of arbitrary size. Moreover,
to the authors’ knowledge this is the first time the MLB model is directly used for a
two-dimensional simulation of polydisperse suspension flow and segregation.

1.2. Related work. Weighted essentially non-oscillatory (WENO) reconstruc-
tions (cf., e.g., [23, 24, 31]), including the particular CWENO procedure [10] used
herein, lead to schemes that sharply resolve discontinuities of solutions of systems of
conservation laws but in some cases produce unphysical solution values, such as neg-
ative densities. In fact, for the model (1.1) or its one-dimensional version (discussed
below), WENO-based reconstructions usually fail to preserve the invariant region D
(see [7, 18] or Examples 2–4 in Section 5). This general shortcoming of FV schemes
with WENO-based reconstructions, as well as other high-order discretizations of con-
servation laws such as discontinuous Galerkin (DG) schemes, have led to the construc-
tion of so-called property-preserving numerical schemes for conservation laws (see [25]
for an overview). Specifically, the method proposed herein is based on the approach by
Zhang and Shu [34, 35], who applied linear scaling limiters to WENO reconstruction
polynomials to ensure the IRP property in conjunction with Legendre Gauss-Lobatto
quadrature to express cell averages in terms of bound-preserving intermediate states
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(cf. [25, Remark 2.46].) These techniques were subsequently extended to compress-
ible flow problems including high-order DG schemes for compressible Euler equations
with source terms [36], high-order FV Hermite WENO schemes for compressible Euler
equations [9], high-order DG schemes for compressible Navier-Stokes equations [34],
bound- and positivity preserving FV WENO schemes for a five-equation model of
two-medium flows [32], and arbitrary Lagrangian-Eulerian (ALE) FV schemes for
compressible two-medium flow equations with stiffened gas equation of state [33].

To prove conservation and IRP properties of the FV scheme for (1.1a), we need
to ensure that the discretized flow field q satisfies a certain discretely divergence-free
(DDF) property. This property is achieved by a marker-and-cell (MAC) arrangement
of unknowns and the particular FD approximation of the Stokes system (1.1b), (1.1c).
Thus, the respective discretizations of the transport and flow parts should be com-
patible in the sense of [15]. Approaches to handle the intricate relationship between
the DDF constraint and the IRP property include a new high-order FV method for
ideal magnetohydrodynamics equations [17] and positivity and maximum-principle-
preserving DG finite element schemes for coupled flow-transport problems [19].

The MLB model is based on the assumption [26,27] that the motion of one particle
of species i is driven by the density difference ρ̄i(Φ) := ρi − ρ(Φ), where ρ(Φ) =
ρ1ϕ1+ · · ·+ρNϕN +(1−ϕ)ρf is the local density of the mixture, and ρf is the density
of the fluid. For the derivation of the model from mass and linear momentum balances
and constitutive assumptions and its hyperbolicity analysis, we refer to [4,6,8,18]. For
this model the authors recently advanced WENO methods with an IRP property [1]
for the one-dimensional zero-flux initial-boundary value problem

∂tΦ+ ∂xf(Φ) = 0, x ∈ (0, L), t > 0,(1.5)

Φ(x, t = 0) = Φ0(x) ∈ D, x ∈ (0, L); f |x=0 = 0, f |x=L = 0, t > 0.(1.6)

Other multispecies kinematic flow models that in one space dimension give rise to sys-
tems similar to (1.5), and which can be handled by similar WENO methods with IRP
property, include multiclass vehicular traffic [1,3,18] and the separation of liquid-liquid
dispersions [30]. On the other hand, two well-known phenomena of sedimentation re-
quire description in two space dimensions, and are captured by (1.1)–(1.4). One of
them is the so-called “Boycott effect” [5] that refers to the increase of settling rates in
a cylinder that is inclined compared with a vertical orientation. The phenomenon is
associated with a rapidly upwards-streaming layer of clear liquid beneath an inclined
wall. The other one, the so-called “Diehl test” [16], originally devised for identifying
the flux function of a scalar conservation law modelling sedimentation, involves an
initial condition where suspension is initially located above clear liquid.

1.3. Outline of the paper. The remainder of this work is organized as follows.
In section 2 we state preliminaries, starting in section 2.1 with the assumptions on the
functions fl(Φ) = ϕlvl(Φ) that allow us to prove the IRP property. In section 2.2 we
show that the velocity functions vl(Φ) of the MLB model and equal-density particles
satisfy these assumptions. In section 3 we describe the scheme to numerically solve
the transport-flow problem (1.1)–(1.3), starting with the (simple) discretization of Ω
by a Cartesian grid. In section 3.1 we discretize the Stokes system (1.1b), (1.1c) by
second-order accurate finite differences that yield a linear system with a symmetric
and positive definite matrix block, as we prove in section 3.2. (Achieving a higher
order of accuracy while maintaining symmetry is not possible with finite differences,
due to boundary conditions.) Furthermore we demonstrate that this system for q
and p (for given Φ) is uniquely solvable. Next, in section 3.3, we outline the first-
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order FV scheme for the solution of (1.1a) over one time step assuming that q is given
(by the method of section 3.2). This FV scheme is based on the LLF numerical flux,
and we prove that it satisfies the IRP property under a suitable Courant-Friedrichs-
Lewy (CFL) condition. Section 4 is devoted to the CWENO reconstruction (based
on the one proposed in [10]) of concentration vectors Φ on the Cartesian grid. We
limit ourselves to third-order reconstruction, which is described in section 4.1. The
reconstructions define polynomial traces of Φ along the boundaries of each cell. The
numerical fluxes across the cell boundaries depend on integrals of the reconstructions
along the corresponding boundary. These integrals are approximated by a suitable
Gauss quadrature rule that is introduced in section 4.2 along with another family
of Gauss-Lobatto quadrature rules. The construction (which involves the Gauss-
Lobatto quadrature) of scaling limiters for the high-order CWENO reconstructions
to ensure that these have the IRP property is detailed in section 4.3. In section 4.4 we
outline the high-order time integration and state the complete scheme for (1.1)–(1.4)
in algorithmic form. In section 5 four numerical examples are presented: an accuracy
test with N = 2, two scenarios for N = 2 including the Boycott effect and the Diehl
test, and settling of N = 4 species. Some conclusions are collected in section 6.

2. Preliminaries.

2.1. Assumptions. We assume that there exist a piecewise differentiable func-
tion w = w(ϕ) which is differentiable in [0, ϕmax] and parameters κ1 ≥ κ2 ≥ · · · ≥
κN > 0 such that

v(Φ)TΦ = w(ϕ)κTΦ, where v(Φ) := (v1(Φ), . . . , vN (Φ))T and κ := (κ1, . . . , κN )T,

where w(ϕ) ≥ 0 for all ϕ ∈ [0, ϕmax], w(ϕmax) = 0, and w′(ϕ) ≤ w′(ϕ̃) if 0 ≤ ϕ ≤ ϕ̃ ≤
ϕmax. Note that this implies that w′(ϕ) ≤ 0 for all ϕ ∈ (0, ϕmax). Furthermore, we
assume that the system (1.5) is hyperbolic on D. Let λ1(Φ) ≥ · · · ≥ λN (Φ) denote
the eigenvalues of the Jacobian matrix J (Φ) of f(Φ) at Φ ∈ D. It is assumed there
exists a piecewise continuous function ψ = ψ(ϕ) such that ψ(ϕ)κTΦ ≤ λN (Φ) and
w′(ϕ) ≥ ψ(ϕ) for all Φ ∈ D, that v1(Φ) ≥ 0 for all Φ ∈ D, and that there exists
a known upper bound M2 = M2(Φ) such that M2(Φ) ≥ max{v1(Φ), λ1(Φ)} for all
Φ ∈ D. Summarizing, we assume that

M1(Φ) := ψ(ϕ)κTΦ ≤ λN (Φ) ≤ · · · ≤ λ1(Φ)
≤ max{v1(Φ), λ1(Φ)} ≤M2(Φ) for all Φ ∈ D.(2.1)

2.2. The MLB model of polydisperse sedimentation. For particles of di-
ameters d1 ≥ · · · ≥ dN , different densities, parameters δl := d2l /d

2
1, δ := (δ1 =

1, δ2, . . . , δN )T, and µ̃sed := gd21/(18µf), where g is the acceleration of gravity and µf

is the viscosity of the pure fluid, the MLB model states that

vl(Φ) = µ̃sedV (ϕ)
(
δlρ̄l(Φ)− (δ1ϕ1ρ̄1(Φ) + · · ·+ δNϕN ρ̄N (Φ))

)
, l = 1, . . . , N.(2.2)

Here V (ϕ) is a hindrance factor that is assumed to satisfy V (0) = 1, V ′(ϕ) ≤ 0, and
V (ϕmax) = 0. Since for different-density particles (ρi ̸= ρj for at least one choice of
i ̸= j), the system (1.5) with vl(Φ) given by (2.2) is in general not hyperbolic on D [8],
we assume equal solid densities, i.e., ρ1 = · · · = ρN =: ρs. Then (2.2) reduces to

vl(Φ) = µsed(1− ϕ)V (ϕ)(δl − δTΦ), l = 1, . . . , N ; µsed := (ρs − ρf)µ̃sed.(2.3)
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Fig. 1. (a) Settling of a polydisperse suspension in an inclined vessel at some time t > 0
(magenta and green dots represent large and small particles, respectively), (b) approximation of Φ,
p, and q on the cell boundaries and cell center according to the marker-and-cell (MAC) strategy.

One can prove that if vl(Φ), l = 1, . . . , N are given by (2.3), then (1.5) is strictly
hyperbolic on D (see [1,6,18]), and the eigenvalues λ1, . . . , λN and velocities v1, . . . , vN
(all depending on Φ) satisfy the so-called interlacing property; specifically,

M̃1(Φ) := µsed

(
δNV (ϕ) + ((1− ϕ)V ′(ϕ)− 2V (ϕ))δTΦ

)
< λN < vN < λN−1 < · · · < λ1 < v1 =:M2(Φ) for all Φ ∈ D.

Notice that for ρs > ρf , there holds v1(Φ) ≥ 0 for all Φ ∈ D.
A standard choice of V (ϕ) is the modified Richardson-Zaki function [29]

V (ϕ) :=


Ṽ (ϕ) := (1− ϕ)nRZ−2 for 0 < ϕ < ϕ∗,

Ṽ (ϕ∗) + Ṽ ′(ϕ∗)(ϕ− ϕ∗) for ϕ∗ ≤ ϕ ≤ ϕmax,

0 otherwise,

nRZ > 3.

Here τ(ϕ) := Ṽ (ϕ∗) + Ṽ ′(ϕ∗)(ϕ− ϕ∗) is the tangent to Ṽ (ϕ) at (ϕ∗, Ṽ (ϕ∗)), where ϕ∗
is chosen such that τ(ϕmax) = 0, i.e., ϕ∗ = ((nRZ − 2)ϕmax − 1)/(nRZ − 3).

It can be proven that with this function, the MLB model with equal-density
particles satisfies the assumptions of section 2.1 for w(ϕ) := µsed(1−ϕ)2V (ϕ), κ := δ,
and ψ(ϕ) := µsed((1− ϕ)V ′(ϕ)− 2V (ϕ)). Note that w′(ϕ) = (1− ϕ)ψ(ϕ).

3. Numerical scheme. We discretize Ω by km control volumes of size hxhy.
We define the intervals Ixi := [xi−1/2, xi+1/2] and I

y
j := [yj−1/2, yj+1/2] and the cells

Ki,j := Ixi × Iyj , where xi+1/2 := xa + ihx for i = 0, . . . , k and yj+1/2 := ya + jhy for
j = 0, . . . ,m. The concentration Φ and the pressure p are approximated in the center
of each cell while the velocity q is discretized on a staggered grid by a marker-and-cell
(MAC) strategy, see [21] and Figure 1(b). Consequently, and partly motivated by the
Dirichlet boundary conditions for q and the absence of boundary conditions for p,

Φi,j(t) ≈
1

hxhy

∫
Ki,j

Φ(x, t) dx, pi,j ≈ p(xi, yj), i = 1, . . . , k, j = 1, . . . ,m,

qxi+1/2,j ≈ qx(xi+1/2, yj), i = 1, . . . , k − 1, j = 1, . . . ,m,

qyi,j+1/2 ≈ qy(xi, yj+1/2), i = 1, . . . , k, j = 1, . . . ,m− 1.
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For later use we introduce the following difference operators for expressions of the
type ω(a1i,j , a

2
i,j , . . . , a

ν
i,j), where in each line either the upper or the lower sign holds:

∆x
±ω(a

1
i,j , a

2
i,j , . . . , a

ν
i,j) := ∓

(
ω(a1i,j , a

2
i,j , . . . , a

ν
i,j)− ω(a1i±1,j , a

2
i±1,j , . . . , a

ν
i±1,j)

)
,

∆y
±ω(a

1
i,j , a

2
i,j , . . . , a

ν
i,j) := ∓

(
ω(a1i,j , a

2
i,j , . . . , a

ν
i,j)− ω(a1i,j±1, a

2
i,j±1, . . . , a

ν
i,j±1)

)
.

3.1. Finite-difference approximation of the Stokes system. The system
(1.1b), (1.1c) for the velocity q = (qx, qy)T and the pressure p has the structure of
a Stokes problem. By writing out in detail the partial derivatives in ∇ · (µ∇q) and
∇ · (µ(∇q)T) and setting g(ϕ) = (g1(ϕ), g2(ϕ))

T we may rewrite (1.1b), (1.1c) as

−(µqxx)x − 1
2 (µq

y
x)y − 1

2 (µq
x
y )y + px = g1(ϕ),(3.1)

−(µqyy)y − 1
2 (µq

y
x)x − 1

2 (µq
x
y )x + py = g2(ϕ),(3.2)

−qxx − qyy = 0,(3.3)

We henceforth write u := qx, v := qy for simplicity of notation. Equations (3.1), (3.2),
and (3.3) will be evaluated at (xi+1/2, yj), (xi, yj+1/2), and (xi, yj), respectively.

The pressure gradient ∇p is approximated by centered finite differences; these do
not involve boundary conditions:

px(xi+1/2, yj) ≈ ∆x
+pi,j/hx, i = 1, . . . , k − 1, j = 1, . . . ,m,(3.4)

py(xi, yj+1/2) ≈ ∆y
+pi,j/hy, i = 1, . . . , k, j = 1, . . . ,m− 1.(3.5)

To describe these and other approximations in usable form, we define the k×m matrix
[p] := (pi,j) (of approximate values of p), the (k−1)×m matrix [px] and the k×(m−1)
matrix [py] of the approximate values of px and py, respectively. Analogous notation
will be used for other quantities. Thus, we may cast (3.4) and (3.5) in matrix form as

[px] = −h−1
x DT

k [p], [py] = −h−1
y [p]Dm;(3.6)

here and for later use we define the n× (n− 1) difference matrices

Dn :=


1 0 . . . 0
−1 1

. . .
...

0
. . .

. . . 0...
. . .

. . . 1
0 · · · 0 −1

 , D∗
n :=


2 0 · · · 0
−1 1

. . .
...

0
. . .

. . . 0...
. . . −1 1

0 · · · 0 −2

 .
We approximate (µux)x(xi+1/2, yj) ≈ h−2

x ∆x
+(µi,j∆

x
−ui+1/2,j) for i = 1, . . . , k− 1

and j = 1, . . . ,m, where µi,j := µ(ϕni,j). If we define the (k − 1) × m matrix [u] =
(ui+1/2,j) and impose the boundary conditions by u1/2,j = uk+1/2,j = 0, then the
approximation of (µux)x can be expressed by the (k − 1)×m matrix

[(µux)x] = −h−2
x DT

k

(
[µ] ∗ (Dk[u])

)
.

(We recall that for matricesA = (Ai,j) andB = (Bi,j) of the same size, the Hadamard
product A ∗ B is defined by (A ∗ B)i,j := Ai,jBi,j .) Moreover, we approximate
(µuy)y(xi+1/2, yj) ≈ h−2

y ∆y
−(µi+1/2,j+1/2∆

y
+ui+1/2,j) for i = 1, . . . , k − 1 and j =

1, . . . ,m. The boundary conditions ui+1/2,1/2 = ui+1/2,m+1/2 = 0 are implemented
by setting ui+1/2,0 = −ui+1/2,1 and ui+1/2,m+1 = −ui+1/2,m+1. Next, we define

µi+1/2,j−1/2 :=


avg(µi+1,j , µi,j , µi+1,j−1, µi,j−1), j = 2, . . . ,m,

avg( 32µi+1,1 − 1
2µi+1,2,

3
2µi,1 − 1

2µi,2), j = 1,

avg( 32µi+1,m − 1
2µi+1,m−1,

3
2µi,m − 1

2µi,m−1), j = m+ 1
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for i = 1, . . . , k−1 and j = 1, . . . ,m+1 and the corresponding (k−1)×(m+1) matrix
[µ̄] := (µi+1/2,j−1/2), where the average function avg can be linear or harmonic. We
may now represent the approximation of (µuy)y by the (k − 1)×m matrix

[(µuy)y] = −h−2
y

(
[µ̄] ∗ ([u](D∗

m+1)
T)
)
Dm+1.

This approximation is first-order accurate for j = 1 and j = m. The term (µvx)y
is approximated by (µvx)y(xi+1/2, yj) ≈ h−1

x h−1
y ∆y

−(µi+1/2,j+1/2∆
x
−vi+1,j+1/2) for

i = 1, . . . , k−1 and j = 1, . . . ,m. Analogously to [u], we define the k×(m−1) matrix
[v] = (vi,j+1/2). The latter approximation can be written as a (k − 1)×m matrix

[(µvx)y] = −h−1
x h−1

y

(
[µ̄](:, 2 : m) ∗ (DT

k [v])
)
DT

m,

where [µ̄](:, 2 : m) denotes the (k − 1) × (m − 1) matrix formed by columns 2 to m
of [µ̄]. Next, we approximate (µvx)x(xi, yj+1/2) ≈ h−2

x ∆x
−(µi+1/2,j+1/2∆

x
−vi+1,j+1/2)

for i = 1, . . . , k and j = 1, . . . ,m− 1. To express this in matrix form, we define

¯̄µi−1/2,j+1/2 :=


avg(µi,j+1, µi,j , µi−1,j+1, µi−1,j), 2 ≤ i ≤ k,
avg( 32µ1,j+1 − 1

2µ2,j+1,
3
2µ1,j − 1

2µ2,j), i = 1,

avg( 32µk,j+1 − 1
2µk−1,j+1,

3
2µk,j − 1

2µk−1,j), i = k + 1

for 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ m − 1 along with the (k + 1) × (m − 1) matrix
[¯̄µ] := (µ̃i−1/2,j+1/2). The approximation of (µvx)x is given by the k× (m− 1) matrix

[(µvx)x] = −h−2
x DT

k+1

(
[¯̄µ] ∗ (D∗

k+1[v])
)
.

(This approximation is first-order accurate for i = 1 and i = k.) In addition, we
approximate the term (µvy)y by (µvy)y(xi, yj+1/2) ≈ h−2

y ∆y
−(µi,j+1∆

y
+vi,j+1/2)) for

i = 1, . . . , k and j = 1, . . . ,m− 1, which is expressed as a k × (m− 1) matrix:

[(µvy)y] = −h−2
y

(
[µ] ∗ ([v]DT

m)
)
Dm.

Similarly, (µuy)x(xi, yj+1/2) ≈ h−1
x h−1

y ∆x
−(µi+1/2,j+1/2∆

y
−ui+1/2,j+1) for i = 1, . . . , k

and j = 1, . . . ,m− 1, which can be written as the k × (m− 1) matrix

[(µuy)x] = −h−1
x h−1

y Dk

(
[¯̄µ](2 : k, :) ∗ ([u]Dm)

)
(notation is similar to that of [(µvx)y]). Finally, we approximate ∇ · q by the sum
of ux(xi, yj) ≈ h−1

x ∆x
−ui+1/2,j and vy(xi, yj) ≈ h−1

y ∆y
−vi,j+1/2 for i = 1, . . . , k and

j = 1, . . . ,m. Thus, we obtain the k ×m matrices

[ux] = h−1
x Dk[u], [vy] = h−1

y [v]DT
m.

3.2. Linear system for the Stokes problem. We first recall that for a p× q
matrix A = (ai,j) and an r × s matrix B, the Kronecker product A⊗B is

A⊗B :=

a1,1B · · · a1,qB
...

. . .
...

ap,1B · · · ap,qB

 (an rp× sq block matrix).

If col(M) denotes the column vector obtained by stacking each column of a matrix M
and diag(v) is the diagonal matrix of the entries of a vector v, then col(BMAT) =
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(A⊗B) col(M) and col(B∗M) = diag(col(B)) col(M). To identify the linear system
to be solved, we now use these identities to convert the formulas for [px], [py], [(µux)x]
etc., which depend linearly on [u], [v], or [p], into expressions for col([px]), col([py]),
col([(µux)x]) etc. that depend linearly on col([u]), col([v]) and col([p]). For simplicity,
we write col(px), col(py), col((µux)x), instead of col([px]), col([py]), col([(µux)x]), etc.

In what follows, In denotes the n× n identity matrix. Clearly, (3.6) implies

col(px) = −h−1
x (Im ⊗DT

k ) col(p), col(py) = −h−1
y (DT

m ⊗ Ik) col(p)

for the gradient of pressure ∇p. For the terms ∇ · (µ(ϕ)∇q) and ∇ · q we get

col((µux)x) = −h−2
x (Im ⊗DT

k ) diag(col(µ))(Im ⊗Dk) col(u),

col((µuy)y) = −h−2
y (DT

m+1 ⊗ Ik−1) diag(col(µ̄))(D
∗
m+1 ⊗ Ik−1) col(u),

col((µvx)y) = −h−1
x h−1

y (Dm ⊗ Ik−1) diag
(
col(µ̄(:, 2 : m))

)
(Im−1 ⊗DT

k ) col(v),

col((µvx)x) = −h−2
x (Im−1 ⊗DT

k+1) diag(col(¯̄µ))(Im−1 ⊗D∗
k+1) col(v),

col((µvy)y) = −h−2
y (DT

m ⊗ Ik)(diag(col(µ))(Dm ⊗ Ik) col(v),

col((µuy)x) = −h−1
x h−1

y (Im−1 ⊗Dk) diag(col(¯̄µ(2 : k, :)))(DT
m ⊗ Ik−1) col(u),

col(ux) = h−1
x (Im ⊗Dk) col(u), col(vy) = h−1

y (Dm ⊗ Ik) col(v).

This allows us to formulate the FD approximation of (3.1)-(3.3) as a linear system

(3.7)

 Ax,x Ax,y Bx

Ay,x Ay,y By

(Bx)T (By)T 0

col(u)
col(v)
col(p)

 =

col(G1(ϕ))
col(G2(ϕ))

0

 ,

where the blocks of the matrix are given by

Ax,x = h−2
x (Im ⊗DT

k ) diag(col(µ))(Im ⊗Dk)

+ 1
2h

−2
y (DT

m+1 ⊗ Ik−1) diag(col(µ̄))(D
∗
m+1 ⊗ Ik−1),

Ax,y = 1
2h

−1
x h−1

y (Dm ⊗ Ik−1) diag(col(µ̄(:, 2 : m)))(Im−1 ⊗DT
k ),

Ay,x = 1
2h

−1
x h−1

y (Im−1 ⊗Dk) diag(col(¯̄µ(2 : k, :)))(DT
m ⊗ Ik−1),

Ay,y = h−2
y (DT

m ⊗ Ik) diag(col(µ))(Dm ⊗ Ik)

+ 1
2h

−2
x (Im−1 ⊗DT

k+1) diag(col(¯̄µ))(Im−1 ⊗D∗
k+1),

Bx = −h−1
x (Im ⊗DT

k ), By = −h−1
y (DT

m ⊗ Ik).

The right-hand side is defined via [G1(ϕ)] = (G1(ϕ)i,j) for i = 1, . . . , k − 1 and
j = 1, . . . ,m and [G2(ϕ)] = (G2(ϕ)i,j) for i = 1, . . . , k and j = 1, . . . ,m− 1, where

g1(ϕ)(xi+1/2, yj) ≈ G1(ϕ)i,j := g1
(
(ϕi,j + ϕi+1,j)/2

)
,

g2(ϕ)(xi, yj+1/2) ≈ G2(ϕ)i,j := g2
(
(ϕi,j + ϕi,j+1)/2

)
.

Let us write (3.7) as

M

(
cq
cp

)
=

(
g
0

)
, M :=

[
A B
BT 0

]
, A :=

[
Ax,x Ax,y

Ay,x Ay,y

]
, B :=

[
Bx

By

]
,(3.8)

where cq := (col(u)T, col(v)T)T, cp := col(p), and g := (col(G1(ϕ))
T, col(G2(ϕ))

T)T.
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Lemma 1. The matrix A is symmetric and positive definite.

Proof. We have that A = P +Q+ 1
2R, where P is a 2×2 block diagonal matrix:

P = blockdiag
(
1
2h

−2
y (DT

m+1 ⊗ Ik−1) diag(col(µ̄))((D
∗
m+1 −Dm+1)⊗ Ik−1),

1
2h

−2
x (Im−1 ⊗DT

k+1) diag(col(¯̄µ))(Im−1 ⊗ (D∗
k+1 −Dk+1)

)
,

which turns out to be diagonal with nonnegative entries, since DT
ℓ+1 diag(a)(D

∗
ℓ+1 −

Dℓ+1) = diag(a1, 0, . . . , 0, aℓ+1) for all a = (a1, . . . , aℓ+1)
T; moreover,

Q = blockdiag
(
h−2
x (Im ⊗DT

k ) diag(col(µ))(Im ⊗Dk),

h−2
y (DT

m ⊗ Ik) diag(col(µ))(Dm ⊗ Ik)
)
,

where both blocks are symmetric and positive definite, since µi,j > 0 and the rank of
Im⊗Dk and Dm⊗Ik is mk, i.e., the columns of both blocks are linearly independent;
and R is a 2× 2 block matrix with blocks

R11 = h−2
y (DT

m+1 ⊗ Ik−1) diag(col(µ̄))(Dm+1 ⊗ Ik−1),

RT
21 = R12 = h−1

x h−1
y (Dm ⊗ Ik−1) diag(col(µ̄(:, 2 : m)))(Im−1 ⊗DT

k ),

R22 = h−2
x (Im−1 ⊗DT

k+1) diag(col(¯̄µ))(Im−1 ⊗Dk+1).

Since [µ̃] := [¯̄µ](2 : k, :) = [µ̄](:, 2 : m), the matrix R is symmetric. Moreover, since
DT

ℓ = −Dℓ+1(2 : ℓ, :) for ℓ = k,m, there holds

R12 =
(
h−1
y DT

m+1 ⊗ Ik−1

)
L̃
(
Im−1 ⊗ h−1

x Dk+1

)
for the (k − 1)(m+ 1)× (k + 1)(m− 1) matrix L̃ given by

L̃(i−1)(k−1)+j,(p−1)(k+1)+q :=

{
µ̃j,i−1, 2 ≤ i ≤ m, 2 ≤ q ≤ k, i− 1 = p, j = q − 1,

0 otherwise,

i = 1, . . . ,m+ 1, j = 1, k − 1, p = 1, . . . ,m− 1, q = 1, . . . , k + 1.

We have R = STR̃S with S := blockdiag(h−1
y Dm+1 ⊗ Ik−1, Im−1 ⊗ h−1

x Dk+1)) and

R̃ :=

[
diag(col(µ̄)) L̃

L̃T diag(col(¯̄µ))

]
.

The matrix R̃ is positive semidefinite since for C ∈ R(k−1)×(m+1),D ∈ R(k+1)×(m−1),(
col(C)T, col(D)T

)
R̃

(
col(C)
col(D)

)
=

k−1∑
j=1

∑
i∈{1,m+1}

µ̄j,iC
2
j,i +

m−1∑
i=1

∑
j∈{1,k+1}

¯̄µjiD
2
ji +

k−1∑
j=1

m−1∑
i=1

µ̃ji(Cj,i+1 +Di+1,j)
2 ≥ 0.

Consequently, as the sum of two symmetric semipositive definite matrices and one
positive definite matrix, the matrix A is symmetric and positive definite.

To see that (3.8) is solvable for any g, we consider the homogeneous system

M

(
cq
cp

)
=

[
A B
BT 0

](
cq
cp

)
=

(
0
0

)
.
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The first block of equations yields cq = −A–1Bcp. Inserting this into the second
block we get BTA−1Bcp = 0, hence cTpB

TA−1Bcp = 0, which holds exactly for
those cp such that Bcp = 0, which by the particular structure of B holds if and only
if cp = αe, where α ∈ R and e := (1, . . . , 1)T. For these vectors cp we get cq = 0. Con-
sequently, the image of M , im(M), is given by im(M) = ker(MT)⊥ = ker(M)⊥ =
{α(0T, eT)T : α ∈ R}⊥. However, for any vector g, there holds (gT,0T)(0T, eT)T = 0,
and therefore (gT,0T)T ∈ im(M), so that the Stokes system is compatible. Since

(0T, eT)

[
A B
BT 0

]
=

[
eTBT 0

0 0

]
= 0,

one can remove any of the equations in the last block of (3.7), since it depends linearly
on the rest, and set the corresponding pressure (component of cp) to zero, and the
resulting systems has only one solution.

3.3. Approximation of the concentration equations. To discretize the con-
centration equations (1.1a) we can view the system in vector form

∂tΦ+ ∂xF
x(qx,Φ) + ∂yF

y(qy,Φ) = 0,(3.9)

where F x(qx,Φ) = qxΦ+kxf(Φ) and F y(qy,Φ) = qyΦ+kyf(Φ), where k = (kx, ky)T.
We denote by Φn

i,j = Φi,j(tn) the average of Φ on a control volume Ki,j at time
tn = nτ , n ∈ N, where τ > 0 is a time step specified later. For the computation of the
numerical flux we use the FD approximation of q obtained from solving (3.7). This
discretization implies the discretely divergence-free (DDF) property

(3.10) h−1
x

(
qx,ni+1/2,j − q

x,n
i−1/2,j

)
+ h−1

y

(
qy,ni,j+1/2 − q

y,n
i,j−1/2

)
= 0,

to be used in the proof of Theorem 4. For an explicit approximation in time we get∫ tn+1

tn

∫
∂Ki,j

F(q,Φ) · nKi,j
dS

≈ τ
(
hyH(qx,ni+1/2,j ,Φ

n
i,j ,Φ

n
i+1,j , e1) + hxH(qy,ni,j+1/2,Φ

n
i,j ,Φ

n
i,j+1, e2)

+ hyH(qx,ni−1/2,j ,Φ
n
i,j ,Φ

n
i−1,j ,−e1) + hxH(qy,ni,j−1/2,Φ

n
i,j ,Φ

n
i,j−1,−e2)

)
,

where F := (F x,F y)T, e1 and e2 are the unit vectors in R2, and H is some numerical
flux function associated to the projection of system (3.9) in the direction ±ei, i =
1, 2. We follow [11, sect. 3] to construct this projection and formally define [∇Φ]i :=
(∂1Φi, ∂2Φi)

T. For a generic vector η = (η1, η2)
T ∈ {±e1,±e2} and denoting η⊥ :=

(−η2, η1)T, let us assume that the solution Φ(x, t) of (3.9) does not vary in the
direction η⊥, that is, ∇Φ · η⊥ = 0. If we define ξ(z, t) := Φ(x(z), t) with x(z) :=
zη + x0 for some x0 ∈ R2, then ∂zξ(z, t) = ∇Φ(x(z), t) · η and

∂z
(
F x(qx, ξ)η1 + F y(qy, ξ)η2

)
(z, t)

=

2∑
i=1

(
∂1F

x(qx,Φ)η1 + ∂iF
y(qy,Φ)η2

)
[∇Φ]i

(
x(z), t

)
· η

=
(
∂xF

x(qx,Φ) + ∂yF
y(qy,Φ)

)(
x(z), t

)
,

hence ξ(z, t) is a solution of the one-dimensional system of conservation laws

(3.11) ∂tξ + ∂z
(
F(q, ξ) · η)

)
= 0, where F(q, ξ) · η = (q · η)ξ + (k · η)f(ξ).
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Let us analyze the eigenvalues λ̃i(q, ξ,η) of the Jacobian matrix J̃ (q, ξ,η) associated
to (3.11). Clearly, J̃ (q, ξ,η) = (q · η)I + (k · η)J (ξ), where J (ξ) is the Jacobian
matrix associated with (1.5). If λi(ξ), i = 1, . . . , N , are the eigenvalues of J (ξ), then

λ̃i(q, ξ,η) = q · η + (k · η)λi(ξ), i = 1, . . . , N.

According to (2.1), M̃1(q · η, ξ,η) < λ̃i < M̃2(q · η, ξ,η) for all i = 1, . . . , N , where

(3.12) M̃p(q, ξ,η) :=

{
q + (k · η)Mp(ξ) if k · η > 0,

q + (k · η)M3−p(ξ) if k · η ≤ 0,
p = 1, 2.

Combining all approximations yields the marching formula
(3.13)

Φn+1
i,j = Φn

i,j − λx∆x
−H

x
(
qx,ni+1/2,j ,Φ

n
i,j ,Φ

n
i+1,j

)
− λy∆y

−H
y
(
qy,ni,j+1/2,Φ

n
i,j ,Φ

n
i,j+1

)
for the concentration vectors Φ, where λx := τ/hx, λy := τ/hy, and

Hσ(q, ξ,ν) = 1
2

(
F σ(q, ξ) + F σ(q,ν)

)
− 1

2α
σ(q, ξ,ν)(ν − ξ), σ = x, y,(3.14)

are the three-point local Lax-Friedrichs (LLF) numerical fluxes, where we define

ασ(q, ξ,ν) := max
{∣∣∣ min

0≤z≤1
M̃1

(
q, zξ + (1− z)ν, ησ

)∣∣∣,∣∣∣ max
0≤z≤1

M̃2

(
q, zξ + (1− z)ν, ησ

)∣∣∣}, σ = x, y,
(3.15)

for ηx = e1 and ηy = e2.
The time step τ = τn is computed after each iteration from the CFL condition

(3.16) αn(λ
n
x + λny ) ≤ 1, αn = max

i,j
{αn

i±1/2,j , α
n
i,j±1/2}.

with αn
i±1/2,j = αx(qx,ni±1/2,j ,Φ

n
i,j ,Φ

n
i±1,j) and α

n
i,j±1/2 = αy(qy,ni,j±1/2,Φ

n
i,j ,Φ

n
i,j±1).

Remark 2. Using the DDF property (3.10) we get from (3.13)

Φn+1
i,j = Φn

i,j − λx∆x
−F

x
(
qx,ni+1/2,j ,Φ

n
i,j ,Φ

n
i+1,j

)
− 1

2λx
(
qx,ni+1/2,jΦ

n
i+1,j − qx,ni−1/2,jΦ

n
i−1,j

)
− λy∆y

−F
y
(
qy,ni,j+1/2,Φ

n
i,j ,Φ

n
i,j+1

)
− 1

2λy
(
qy,ni,j+1/2Φ

n
i,j+1 − qy,ni,j−1/2Φ

n
i,j−1

)
+ 1

2τ
(
h−1
x ∆x

−q
x,n
i+1/2,j + h−1

y ∆y
−q

y,n
i,j+1/2

)
Φn

i,j

= Φn
i,j − λx∆x

−F
x
(
qx,ni+1/2,j ,Φ

n
i,j ,Φ

n
i+1,j

)
− 1

2λx
(
qx,ni+1/2,jΦ

n
i+1,j − qx,ni−1/2,jΦ

n
i−1,j

)
− λy∆y

−F
y
(
qy,ni,j+1/2,Φ

n
i,j ,Φ

n
i,j+1

)
− 1

2λy
(
qy,ni,j+1/2Φ

n
i,j+1 − qy,ni,j−1/2Φ

n
i,j−1

)
,

where we define the numerical fluxes

Fσ(q,ΦL,ΦR) :=
1
2k

σ
(
f(ΦL) + f(ΦR)

)
− 1

2α
σ(q,ΦL,ΦR)(ΦR − ΦL), σ = x, y.

This notation allows us to prove the IRP property of the first order scheme and also it
will help us in the description of the high-order reconstruction procedure in section 4.

The proof of the IRP property for the LLF scheme relies on the following theorem.
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Theorem 3. Let us consider the “one-dimensional” scheme, σ = x, y,

ξn+1
0 = ξn0 − λ

(
Fσ(q+, ξ

n
0 , ξ

n
1 )−Fσ(q−, ξ

n
−1, ξ

n
0 )
)
− 1

2λ(q+ξ
n
1 − q−ξn−1),(3.17)

where λ ∈ R+, q−, q+ ∈ R. If the CFL condition

(3.18) λmax
{
ασ(q+, ξ0, ξ1), α

σ(q−, ξ−1, ξ0)
}
≤ 1

is in effect, ξ−1, ξ0, ξ1 ∈ D and ξn+1
0 = (ξn+1

1,0 , . . . , ξn+1
N,0 )

T, then

ξn+1
l,0 ≥ 0, l = 1, . . . , N,(3.19)

ξn+1
1,0 + · · ·+ ξn+1

N,0 ≤ ϕmax − 1
2λ(q+ − q−)ϕmax.(3.20)

Proof. We omit in this proof the superscript n and let ξ := ξ1 + · · ·+ ξN and

(3.21) α± := ασ(q±, ξ0, ξ±1),

where either the upper or the lower sign holds here and in the rest of the proof.
To show that ξn+1

l,0 ≥ 0 for all l, we start from (3.17) to get for all l = 1, . . . , N

ξn+1
l,0 =

(
1− 1

2λ(α+ + α−)
)
ξl,0 +

1
2λα+G

+
l (ξ1) +

1
2λα−G

−
l (ξ−1),(3.22)

G±
l (ξ) := ξl

(
1∓ α−1

± (q± + kσvl(ξ))
)
.

From (2.1), (3.21) and (3.15) we get that |q± + kσvl(ξ±1)| ≤ α± and therefore
G±

l (ξ±1) ≥ 0 from ξl,j ≥ 0, j ∈ {−1, 1}. We thus obtain (3.19) from ξl,0 ≥ 0, (3.18),
and (3.22).

To prove (3.20), we sum (3.22) over l = 1, . . . , N , use that v(ξ)Tξ = w(ξ)κTξ (cf.
section 2.1) and ξ0 ≤ ϕmax to get

ξn+1
0 =

(
1− 1

2λ(α+ + α−)
)
ξ0 +

1
2λα+ξ1 +

1
2λα−ξ−1

− 1
2λ
(
q+ξ1 + kσw(ξ1)κ

Tξ1 − q−ξ−1 + kσw(ξ−1)κ
Tξ−1

)
=
(
1− 1

2λ(α+ + α−)
)
ξ0 +

1
2λ(α+ + α−)ϕmax − 1

2λ(q+ − q−)ϕmax

+ 1
2 (Y+ + Y−) ≤ ϕmax − 1

2λ(q+ − q−)ϕmax +
1
2 (Y+ + Y−),

where

Y± := α±(ξ±1 − ϕmax)∓
(
q±(ξ±1 − ϕmax) + kσw(ξ±1)κ

Tξ±1

)
,

so the proof is complete when showing that Y± ≤ 0.
Since w(ϕmax) = 0, we observe that

Y± =W±(ξ±1)−W±(ϕmax), W±(ξ) := α±ξ ∓
(
q±ξ + kσw(ξ)κTξ±1

)
.

By the mean value theorem, we obtain

Y± =W ′
±(ϑ±1)(ξ±1 − ϕmax), W ′

±(ξ) = α± ∓
(
q± + kσw′(ξ)κTξ±1

)
,

for suitable ϑ±1 ∈ [ξ±1, ϕmax], therefore it suffices to show that W ′
±(ϑ±1) ≥ 0, since

ξ±1−ϕmax ≤ 0. Since, by assumption, w′ is increasing in (0, ϕmax), ψ(ξ) ≤ w′(ξ) ≤ 0
for all ξ ∈ (0, ϕmax), M2(ξ) ≥ 0 for all ξ ∈ D, and ϑ± ∈ (ξ±1, ϕmax), it follows that

M1(ξ±) = ψ(ξ±1)κ
Tξ±1 ≤ w′(ξ±1)κ

Tξ±1 ≤ w′(ϑ±)κ
Tξ±1 ≤ 0 ≤M2(ξ±1),

therefore α± = ασ(q±, ξ0, ξ±1) and the definition of ασ in (3.15) and (3.12) imply

α± ≥
∣∣q± + kσw′(ϑ±)κ

Tξ±1

∣∣,
which yields W ′

±(ϑ±1) ≥ 0. This concludes the proof of Theorem 3.
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Now we are in a position to establish the following result.

Theorem 4. If the CFL condition (3.16) is in effect and the velocity functions
vi(Φ) satisfy the assumptions of section 2.1, then the LLF scheme defined by (3.13)
with the numerical flux (3.14) satisfies the invariant region preservation property

Φn
i,j ∈ D for all Ki,j ⇒ Φn+1

i,j ∈ D for all Ki,j ; for all n = 0, 1, 2, . . . .(3.23)

Proof. According to Remark 2, Φn+1
i,j = λ̃xH

x
i,j + λ̃yH

y
i,j for a given cell Ki,j ,

where we define λ := λx + λy, λ̃x := λx/λ, λ̃y := λy/λ, and the vectors

Hx
i,j := Φn

i,j − λx∆x
−F

x
(
qx,ni+1/2,j ,Φ

n
i,j ,Φ

n
i+1,j

)
− 1

2λx
(
qx,ni+1/2,jΦ

n
i+1,j − qx,ni−1/2,jΦ

n
i−1,j

)
,

Hy
i,j := Φn

i,j − λy∆y
−F

y
(
qy,ni,j+1/2,Φ

n
i,j ,Φ

n
i,j+1

)
− 1

2λy
(
qy,ni,j+1/2Φ

n
i,j+1 − qy,ni,j−1/2Φ

n
i,j−1

)
.

By the CFL condition (3.16), Theorem 3, and denoting Hσ
i,j := (Hσ

1,i,j , . . . ,H
σ
N,i,j)

T,
we get Hσ

l,i,j ≥ 0, σ = x, y, for l = 1, . . . , N , and

N∑
l=1

Hx
l,i,j ≤ ϕmax −

λ

2

(
∆x

−q
x,n
i+1/2,j

)
ϕmax,

N∑
l=1

Hy
l,i,j ≤ ϕmax −

λ

2

(
∆y

−q
y,n
i,j+1/2

)
ϕmax.

These inequalities imply that ϕn+1
l,i,j = λ̃xH

x
l,i,j + λ̃yH

y
l,i,j ≥ 0 for l = 1, . . . , N . Using

the DDF property (3.10) we may complete the proof of Φn+1
i,j ∈ D by noticing that

ϕn+1
1,i,j + · · ·+ ϕn+1

N,i,j

= λ̃x
(
Hx

1,i,j + · · ·+Hx
N,i,j

)
+ λ̃y

(
Hy

1,i,j + · · ·+Hy
N,i,j

)
≤ λ̃xϕmax − 1

2λx
(
∆x

−q
x,n
i+1/2,j

)
ϕmax + λ̃yϕmax − 1

2λy
(
∆y

−q
y,n
i,j+1/2

)
ϕmax

= ϕmax − 1
2τ
(
h−1
x ∆x

−q
x,n
i+1/2,j + h−1

y ∆y
−q

y,n
i,j+1/2

)
ϕmax = ϕmax.

4. CWENO-based reconstruction on Cartesian grids. Since the order of
accuracy of the solution of the Stokes problem is two, an order of accuracy of at least
two is needed in the transport part. We nevertheless pursue third-order accuracy.

4.1. Third-order reconstruction. We assume that the (at most) second-de-
gree so-called optimal polynomial Popt(x, y) approximates the nine cell averages of
the stencil S0 := Ω0 ∪ · · · ∪ Ω8 (see Figure 2(a)) in the least-squares sense. Then,
four first-degree polynomials Pr(x, y), r = 1, . . . , 4, are computed as least-squares
approximations of the cell averages over the respective sub-stencils S1 to S4. A second-
degree central polynomial P0(x, y) is then defined such that Popt(x, y) = d0P0(x, y)+
d1P1(x, y)+· · ·+d4P4(x, y), where dr > 0 are the so-called linear weights which satisfy
d0 + · · · + d4 = 1. The final reconstruction polynomial Pi,j(x, y) over the cell Ki,j

is a convex combination Pi,j(x, y) := ω0P0(x, y) + ω1P1(x, y) + · · · + ω4P4(x, y) with
the so-called nonlinear weights ωr := ω̃r/(ω̃0 + · · · + ω̃4), where ω̃r := dr/(ISr + ε)p,
r = 0, . . . , 4. Here ε > 0 is a small parameter, p ≥ 2, and ISr is a smoothness indicator
(see [10] for details on the polynomials and smoothness indicators).

Let Pi,j := (P
(1)
i,j , . . . , P

(N)
i,j )T be the reconstruction polynomial vector, where P

(l)
i,j

is the second-degree polynomial for component l of Φn
i,j obtained by the CWENO-

based procedure described above. In terms of the traces of Pi,j(x, y) on the edges
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(xi−1/2, yj−1/2) (xi+1/2, yj−1/2)

(xi−1/2, yj+1/2) (xi+1/2, yj+1/2)

Φ+
i,j−1/2(x)

Φ−
i,j+1/2(x)

Φ+
i−1/2,j(y) Φ−

i+1/2,j(y)

Ki,j

Ω0

Ω1 Ω2 Ω3

Ω4 Ω5

Ω6 Ω7 Ω8

S1

S2

S3

S4

S0(a) (b)

x

y

Fig. 2. (a) Stencil S0 := Ω0∪Ω1∪· · ·∪Ω8 and sub-stencils S1 := Ω2∪Ω3∪Ω5, S2 := Ω5∪Ω7∪Ω8,
S3 := Ω4 ∪ Ω6 ∪ Ω7, and S4 := Ω1 ∪ Ω2 ∪ Ω4, (b) illustration of the traces (4.2).

of Ki,j (see Figure 2(b)) the FV scheme (3.13) becomes

Φn+1
i,j = Φn

i,j −
τ

hxhy

(∫
Iy
j

∆x
−F

x
(
qxi+1/2,j(y),Φ

−
i+1/2,j(y),Φ

+
i+1/2,j(y)

)
dy

+
1

2

∫
Iy
j

(
qxi+1/2,j(y)Φ

+
i+1/2,j(y)− qxi−1/2,j(y)Φ

−
i−1/2,j(y)

)
dy

+

∫
Ix
i

∆y
−F

y
(
qyi,j+1/2(x),Φ

−
i,j+1/2(x),Φ

+
i,j+1/2(x)

)
dx

+
1

2

∫
Ix
i

(
qyi,j+1/2(x)Φ

+
i,j+1/2(x)− q

y
i,j−1/2(x)Φ

−
i,j−1/2(x)

)
dx

)
,

(4.1)

where the integrals are to be approximated with sufficient accuracy. The traces are
given by

Φ+
i−1/2,j(y) = Pi,j(xi−1/2, y), Φ−

i+1/2,j(y) = Pi,j(xi+1/2, y) for y ∈ Iyj ,
Φ+

i,j−1/2(x) = Pi,j(x, yj−1/2), Φ−
i,j+1/2(x) = Pi,j(x, yj+1/2) for x ∈ Ixi ,

qxi+1/2,j(y) = qxi+1/2,j , qxi−1/2,j(y) = qxi−1/2,j for y ∈ Iyj ,
qyi,j+1/2(x) = qyi,j+1/2, qyi,j−1/2(x) = qyi,j−1/2 for x ∈ Ixi ,

(4.2)

see Figure 2(b). This approach has been used successfully for a DG discretization
(cf., e.g., [35, Th. 4.3]) and for a FV compact WENO scheme [20, sect. 4].

4.2. Quadrature formulas. To approximate the integrals in (4.1) with suffi-
cient accuracy, we apply a G-point Gauss quadrature rule, which is exact for single
variable polynomials of degree 2G− 1. We denote by

(4.3) Sx
i := {xβi : β = 1, . . . , G} and Sy

j := {yβj : β = 1, . . . , G}

the Gauss quadrature points (nodes) on Ixi and Iyj , respectively, and by wβ the cor-
responding weights on the interval [− 1

2 ,
1
2 ], such that their sum equals one. In the

subsequent proofs we will also use the L-point Gauss–Lobatto quadrature rule, where

(4.4) Ŝx
i := {x̂αi : α = 1, . . . , L} and Ŝy

j := {ŷαj : α = 1, . . . , L}

are the Gauss-Lobatto nodes on Ixi and Iyj , respectively. Moreover, we use the
Cartesian-product notation Sx

i × Sy
j := {(x, y) : x ∈ Sx

i , y ∈ Sy
j } to define the set

(4.5) Si,j := (Sx
i × Ŝy

j ) ∪ (Ŝx
i × Sy

j ).
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We may now replace (4.1) by the effective scheme

Φn+1
i,j = Φn

i,j −
(
w1H̃

x,1
i,j + · · ·+ wGH̃

x,G
i,j

)
−
(
w1H̃

y,1
i,j + · · ·+ wGH̃

y,G
i,j

)
,

H̃x,β
i,j := λx∆

x
−F

x
(
qxi+1/2,j ,Φ

−
i+1/2,j(y

β
j ),Φ

+
i+1/2,j(y

β
j )
)

+ 1
2λx

(
qxi+1/2,jΦ

+
i+1/2,j(y

β
j )− qxi−1/2,jΦ

−
i−1/2,j(y

β
j )
)
,

H̃y,β
i,j := λy∆

y
−F

y
(
qyi,j+1/2,Φ

−
i,j+1/2(x

β
i ),Φ

+
i,j+1/2(x

β
i )
)

+ 1
2λy

(
qyi,j+1/2Φ

+
i,j+1/2(x

β
i )− qyi,j−1/2Φ

−
i,j−1/2(x

β
i )
)
, β = 1, . . . , G.

(4.6)

In section 5 we use G = 2 with Sx
i = {xi − (

√
3/6)hx, xi + (

√
3/6)hx}, Sy

j =
{yj − (

√
3/6)hy, yj + (

√
3/6)hy} and weights w1, w2 = 1/2; and L = 3 with Ŝx

i =
{xi − hx/2, xi, xi + hx/2}, Ŝy

j = {yj − hy/2, yj , yj + hy/2} and weights ŵ1, ŵ3 = 1/6
and ŵ2 = 2/3. Both quadrature rules are exact for polynomials of degree 3.

4.3. Scaling limiters. We herein slightly modify the Zhang and Shu [34, 35]
scaling limiter to handle the equation (1.1). The first step is to limit each concentra-
tion ϕl. Let us assume that Φn

i,j ∈ D and K̃i,j is a prescribed subset of Ki,j . We then
replace the polynomials P

(l)
i,j (x, y) by

P̃
(l)
i,j (x, y) := θl

(
P

(l)
i,j (x, y)− ϕnl,i,j

)
+ ϕnl,i,j ,

θl := min

{
ϕnl,i,j

ϕnl,i,j −m
(l)
i,j

, 1

}
, m

(l)
i,j := min

(x,y)∈K̃i,j

P
(l)
i,j (x, y), l = 1, . . . , N.

(4.7)

Then the cell average of P̃
(l)
i,j (x, y) over Ki,j is still ϕnl,i,j and

P̃
(l)
i,j (x, y) ≥ 0 for all (x, y) ∈ K̃i,j and l = 1, . . . , N .(4.8)

Next, we define the polynomial

P̂i,j(x, y) := θ̂
(
P̃

(1)
i,j (x, y) + · · ·+ P̃

(N)
i,j (x, y)− ϕni,j

)
+ ϕni,j ,

θ̂ := min

{∣∣∣∣ϕmax − ϕni,j
Mi,j − ϕni,j

∣∣∣∣, 1}, Mi,j := max
(x,y)∈K̃i,j

(
N∑
l=1

P̃
(l)
i,j (x, y)

)
.

(4.9)

Thus, P̂i,j(x, y) ≤ ϕmax for all (x, y) ∈ K̃i,j . We now define the modified polynomials

(4.10) P̄
(l)
i,j (x, y) := θ̂

(
P̃

(l)
i,j (x, y)− ϕnl,i,j

)
+ ϕnl,i,j , l = 1, . . . , N,

and setting P̄i,j := (P̄
(1)
i,j , . . . , P̄

(N)
i,j )T, replace the traces of the reconstruction polyno-

mials (4.2) by pointwise evaluations to be sampled by the Gauss quadrature formula:

Φ∓
i±1/2,j(y

β
j ) ≈ P̄i,j(xi±1/2, y

β
j ), Φ∓

i,j±1/2(x
β
i ) ≈ P̄i,j(x

β
i , yj±1/2).(4.11)

Remark 5. The accuracy analysis of [1, sect. 4.4] shows that the limiters defined
in (4.7) and (4.9) do not destroy the order of accuracy of the reconstruction.

We first prove the following lemma.

Lemma 6. Consider P̄i,j(x, y) defined by (4.10). If Φn
i,j ∈ D, then P̄i,j(x, y) ∈ D

for all (x, y) ∈ K̃i,j.
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Proof. Let (x, y) ∈ K̃i,j . By definition (4.10), (4.8), and since θ̂ ∈ [0, 1], we have

P̄
(l)
i,j (x, y) = θ̂P̃

(l)
i,j (x, y) + (1− θ̂)ϕnl,i,j ≥ 0 l = 1, . . . , N,(4.12)

P̄
(1)
i,j (x, y) + · · ·+ P̄

(N)
i,j (x, y) = θ̂

(
P̃

(1)
i,j (x, y) + · · ·+ P̃

(N)
i,j (x, y)− ϕni,j

)
+ ϕni,j

= P̂i,j(x, y) ≤ ϕmax.(4.13)

Combining (4.12) and (4.13) we deduce that P̄i,j(x, y) ∈ D for all (x, y) ∈ K̃i,j .

Now, we are in position to state the following result.

Theorem 7. Consider the finite volume scheme (4.6) associated with the recon-
struction polynomials P̄i,j(x, y) defined by (4.10) in the sense that (4.11) is used with
K̃i,j = Si,j, where Si,j is the stencil (4.5). If the CFL condition

(4.14) max
i,j,β

{
αi+1/2,β , αβ,j+1/2

}
(λnx + λny ) ≤ min

γ=1,...,L
ŵγ

is in effect and Φn
i,j ∈ D for all i and j, then Φn+1

i,j ∈ D for all i and j.

Proof. Utilizing the Gauss quadrature rule (4.3) for P̄i,j on Ixi , we get

Φn
i,j =

1

hxhy

∫
Iy
j

∫
Ix
i

P̄i,j(x, y) dxdy =
1

hxhy

∫
Iy
j

(
G∑

β=1

P̄i,j(x
β
i , y)wβhx

)
dy

=

G∑
β=1

wβ

(
1

hy

∫
Iy
j

P̄i,j(x
β
i , y)dy

)
= w1Φ

n,y,1
i,j + · · ·+ wGΦ

n,y,G
i,j ,

where Φy,β
i,j denotes the average of P̄i,j(x

β , y) over Iyj . Analogously, applying the
Gauss quadrature rule (4.3) to the interval Iyj yields Φn

i,j = w1Φ
x,1
i,j + · · ·+ wGΦ

x,G
i,j ,

where Φx,β
i,j denotes the average of P̄i,j(x, y

β) over Ixi . Combining both representations
of Φn

i,j and considering that λ̃x + λ̃y = 1, we obtain

Φn
i,j = λ̃x

(
w1Φ

x,1
i,j + · · ·+ wGΦ

x,G
i,j

)
+ λ̃y

(
w1Φ

y,1
i,j + · · ·+ wGΦ

y,G
i,j

)
.(4.15)

Replacing Φn
i,j on the right-hand side of (4.6) by the right-hand side of (4.15) we get

Φn+1
i,j = λ̃x

(
w1H

x,1
i,j + · · ·+ wGH

x,G
i,j

)
+ λ̃y

(
w1H

y,1
i,j + · · ·+ wGH

y,G
i,j

)
,(4.16)

where Hσ,β
i,j := Φσ,β

i,j − λH̃σ,β
i,j for σ = x, y and β = 1, . . . , G. To prove that all vectors

Hσ,β
i,j assume values in D we focus on σ = x. Next, define the vectors

sγ,βi,j := P̄i,j(x̂
γ
i , y

β
j ) for γ = 1, . . . , L,

s0,βi,j := P̄i−1,j(xi−1/2, y
β
j ), and sL+1,β

i,j := P̄i+1,j(xi+1/2, y
β
j )

for the Gauss-Lobatto points (4.4). By Lemma 6, sγ,βi,j ∈ D for these γ and β. The
quadrature rule implies that Φx,β

i,j = ŵ1s
1,β
i,j + · · ·+ ŵLs

L,β
i,j . Moreover (cf. (4.6)),

∆x
−F

x
(
qxi+1/2,j ,Φ

−
i+1/2,j(y

β
j ),Φ

+
i+1/2,j(y

β
j )
)

= Fx
(
qxi+1/2,j , s

L,β
i,j , s

L+1,β
i,j

)
−Fx

(
qxi−1/2,j , s

0,β
i,j , s

1,β
i,j

)
= Fx

(
qxi+1/2,j , s

L,β
i,j , s

L+1,β
i,j

)
−Fx

(
0, sL−1,β

i,j , sL,β
i,j

)
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+

L−1∑
γ=2

(
Fx
(
0, sγ,βi,j , s

γ+1,β
i,j

)
−Fx

(
0, sγ−1,β

i,j , sγ,βi,j

))
+Fx

(
0, s1,βi,j , s

2,β
i,j

)
−Fx

(
qxi−1/2,j , s

0,β
i,j , s

1,β
i,j

)
.

We may now rewrite Hx,β
i,j as follows, where sγ := sγ,βi,j in this particular computation:

Hx,β
i,j = ŵ1s

1 + · · ·+ ŵLs
L − λ

(
Fx(qxi+1/2,j , s

L, sL+1)−Fx(qxi−1/2,js
0, s1)

)
− 1

2λ(q
x
i+1/2,js

L+1 − qxi−1/2,js
0)

= ŵ1s
1 + · · ·+ ŵLs

L − λ
(
Fx(qxi+1/2,j , s

L, sL+1)−Fx(0, sL−1, sL)
)

− λ
L−1∑
γ=2

(
Fx(0, sγ , sγ+1)−Fx(0, sγ−1, sγ)

)
− λ

(
Fx(0, s1, s2)−Fx(qxi−1/2,j , s

0, s1)
)
− 1

2λ
(
qxi+1/2,js

L+1 − qxi−1/2,js
0
)

= ŵL

{
sL − ŵ−1

L λ
(
Fx(qxi+1/2,j , s

L, sL+1)−Fx(0, sL−1, sL)− 1
2q

x
i+1/2,js

L+1
)}

+

L−1∑
γ=2

ŵγ

{
sγ − ŵ−1

γ λ
(
Fx(0, sγ , sγ+1)−Fx

(
0, sγ−1, sγ)

)}
+ ŵ1

{
s1 − ŵ−1

1 λ
(
Fx(0, s1, s2)−Fx(qxi−1/2,j , s

0, s1) + 1
2q

x
i−1/2,js

0
)}

= ŵ1H
x,1,β
i,j + · · ·+ ŵLH

x,L,β
i,j ,

where Hx,γ,β
i,j denotes the corresponding term in curled brackets multiplying ŵγ , γ =

1, . . . , L. IfHx,β
l,i,j andH

x,γ,β
l,i,j , l = 1, . . . , N , denote the components of the vectorsHx,β

i,j

and Hx,γ,β
i,j , respectively, then Theorem 3 implies that Hx,γ,β

l,i,j ≥ 0 for l = 1, . . . , N ,
β = 1, . . . , G and γ = 1, . . . , L, along with

N∑
l=1

Hx,γ,β
l,i,j ≤


ϕmax +

1
2 ŵ

−1
1 λqxi−1/2,jϕmax, γ = 1,

ϕmax, γ = 2, . . . , L− 1,

ϕmax − 1
2 ŵ

−1
L λqxi+1/2,jϕmax, γ = L.

Consequently, Hx,β
l,i,j ≥ 0 and

N∑
l=1

Hx,β
l,i,j =

N∑
l=1

L∑
γ=1

ŵγH
x,γ,β
l,i,j =

L∑
γ=1

ŵγ

N∑
l=1

Hx,γ,β
l,i,j

≤ ϕmax(ŵ1 + · · ·+ ŵL)− 1
2λϕmax∆

x
−q

x
i+1/2,j

= ϕmax

(
1− 1

2λ∆
x
−q

x
i+1/2,j

)
, β = 1, . . . , G.

(4.17)

Analogously we get Hy,β
l,i,j ≥ 0 for l = 1, . . . , N , β = 1, . . . , G and γ = 1, . . . , L, and

(4.18)

N∑
l=1

Hy,β
l,i,j ≤ ϕmax

(
1− 1

2λ∆
y
−q

y
i,j+1/2

)
, β = 1, . . . , G.

Then, from (4.16) it is clear that ϕn+1
l,i,j ≥ 0, for l = 1, . . . , N . Finally, by using (4.17),

(4.18) and the DDF property (3.10) we obtain

N∑
l=1

ϕn+1
l,i,j = λ̃x

G∑
β=1

wβ

(
N∑
l=1

Hx,β
l,i,j

)
+ λ̃y

G∑
β=1

wβ

(
N∑
l=1

Hy,β
l,i,j

)
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Algorithm 4.1 Coupling algorithm

Input: ρf , ρs, µf , nRZ, υ, θ,N, d1, . . . , dN , xa, xb, ya, yb, k,m
Φn ← Φ0, τ ← τ0, n← 0
[qn, p]← STOKES(Φn), where STOKES means (3.7) given Φn

while t < tend do
for i = 1, . . . , k do

for j = 1, . . . ,m do
[Φ±

i±1/2,β ,Φ
±
β,j±1/2]← CWENO3(Φn)

compute H̃σ,β
i,j , σ = x, y from (4.6) given αi±1/2,β , αβ,j±1/2

Hσ,β
i,j ← Φσ,β

i,j − λH̃σ,β
i,j , σ = x, y

L(Ψn)← λ̃x
∑

β wβH
x,β
i,j + λ̃y

∑
β wβH

y,β
i,j , where Ψn = (qn,Φn)

end for
end for
Φ(1) ← Φn + τL(Ψn)
[q(1),∼]← STOKES(Φ(1))
compute L(Ψ(1)), where Ψ(1) = (q(1),Φ(1)) by processes described above
Φ(2) ← 3

4Φ
n + 1

4

(
Φ(1) + τL(Ψ(1))

)
[q(2), p]← STOKES(Φ(1))
compute L(Ψ(2)), where Ψ(2) = (q(2),Φ(2)) by processes described above
Φn+1 ← 1

3Φ
n + 2

3

(
Φ(2) + τL(Ψ(2))

)
, where Ψ(2) = (q(2),Φ(2))

qn+1 ← q(2), pn+1 ← p
∆t← CFL · hxhy

hx+hy
· minγ ŵγ

α , where α := maxi,j,β
{
αi+1/2,β , αβ,j+1/2

}
t← t+ τ , n← n+ 1

end while
Output: {(Φ1, q1, p1), . . . , (Φn, qn, pn)}

≤ (λ̃x + λ̃y)(w1 + · · ·+ wG)ϕmax − 1
2ϕmaxλx(w1 + · · ·+ wG)∆

x
−q

x
i+1/2,j

− 1
2ϕmaxλy(w1 + · · ·+ wG)∆

y
−q

y
i,j+1/2

= ϕmax

(
1− 1

2τ(h
−1
x ∆x

−q
x
i+1/2,j + h−1

y ∆y
−q

y
i,j+1/2)

)
= ϕmax.

Hence it follows that Φn+1
i,j ∈ D.

4.4. Time discretization. We here employ a strong-stability preserving (SSP)
third-order TVD Runge-Kutta time discretization. Due to convexity in the interme-
diate stages, this time discretization preserves the IRP property. To satisfy the CFL
condition (4.14) the time step τ is computed deceptively for each time step n, see
Algorithm 4.1 for a description of the complete numerical scheme.

5. Numerical examples. In part following [28], we define dimensionless (star-
red) variables via x = Xx∗, t = Tt∗, and q = (X/T )q∗, where X is a reference
length and T := X/vSt is a reference time, where vSt := (ρs − ρf)gd21/(18µf) is the
Stokes velocity, i.e., the settling velocity of a single particle of the largest species,
where µf is the viscosity of the fluid. Furthermore, we define the parameter µ0 :=
(ρf/(18(ρs − ρf)))(X/d1)

2. To simplify notation, we omit the asterisk and obtain
the dimensionless Stokes equation (1.1b), where µ(ϕ) = (1/µ0)(1 − ϕ/ϕmax)

−υ and
g(ϕ) := (ρs − ρf)ϕk/ρf . In all examples we use the constants nRZ = 4.6, υ = 2,
X = 1m, ϕmax = 0.6, ρs = 2790 kg/m3, ρf = 1208 kg/m3, and µf = 0.02416Pa s,
such that µ0 = 4.086× 103. We use the initial time step τ0 = 0.0003 and CFL = 1.0.
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Table 1
Example 1: L1 error, numerical order, and CPU time for IRP-LFCW and IRP-LF schemes at

t = 0.01 or 0.2 with θ = 0◦ or 10◦. Reference solutions are computed on kref ×mref = 409600 cells.

k ×m ek,m1 θk,m1 ek,m2 θk,m1 ek,mtot θk,mtot cpu [s]

IRP-LFCW,
t = 0.01 ,
θ = 0◦

5× 5 2.097e-03 — 2.093e-03 — 4.191e-03 — 2.719e-02
10× 10 6.282e-04 1.73 6.316e-04 1.72 1.259e-03 1.73 3.981e-02
20× 20 9.571e-05 2.71 9.604e-05 2.71 1.917e-03 2.71 2.451e-01
40× 40 1.715e-05 2.48 1.635e-05 2.55 3.351e-04 2.51 1.681

IRP-LFCW,
t = 0.2 ,
θ = 0◦

5× 5 9.165e-03 — 1.015e-02 — 1.932e-02 — 3.80e-01
10× 10 4.109e-03 1.15 4.880e-03 1.05 8.990e-03 1.10 9.63e-01
20× 20 2.259e-03 0.86 2.854e-03 0.77 5.114e-03 0.81 3.85
40× 40 1.160e-03 0.96 8.565e-04 1.73 2.017e-03 1.34 27.81

IRP-LFCW,
t = 0.01 ,
θ = 10◦

5× 5 2.003e-03 — 2.006e-03 — 4.009e-03 — 1.736e-02
10× 10 5.798e-04 1.78 5.833e-04 1.78 1.163e-03 1.78 3.223e-02
20× 20 8.911e-05 2.70 8.949e-05 2.70 1.786e-04 2.70 2.372e-01
40× 40 1.632e-05 2.44 1.553e-05 2.52 3.185e-05 2.48 1.602

IRP-LF,
t = 0.01 ,
θ = 10◦

5× 5 2.974e-03 — 2.942e-03 — 5.916e-03 — 9.041e-03
10× 10 1.708e-03 0.79 1.709e-03 0.78 3.417e-03 0.79 1.330e-02
20× 20 9.152e-04 0.90 9.174e-04 0.89 1.832e-03 0.89 7.980e-02
40× 40 4.585e-04 1.00 4.598e-04 1.00 9.183e-04 1.00 0.526

For the CWENO reconstruction we employ the same, linear, non-linear weights, ε,
and p as in [10]. We denote by “LFCW” and “IRP-LFCW” the numerical scheme
without and with the limiters, respectively and by “IRP-LF” the first order method
(3.13). To compute approximate L1 errors at different times we denote by (ϕk,ml,i,j(t)) for
i = 1, . . . , k and j = 1, . . . ,m and (ϕkref ,mref

l,i,j (t)) for i = 1, . . . , kref and j = 1, . . . ,mref ,
l = 1, . . . , N , the numerical solution at time t calculated with k ×m and kref ×mref

cells, respectively. We compute the projection of the reference solution by

ϕ̃ref,k,ml,i,j (t) =
1

RxRy

Rx∑
p=1

Ry∑
q=1

ϕnref

l,Rx(i−1)+p,Ry(j−1)+q(t), l = 1, . . . , N,

where Rx := kref/k, and Ry := mref/m. The approximate L1 errors of the numerical
solution on the mesh with k ×m cells at time t is then given by

ek,ml (t) := hxhy

k∑
i=1

m∑
j=1

∣∣ϕ̃ref,k,ml,i,j (t)− ϕk,ml,i,j(t)
∣∣, l = 1, . . . , N ; ek,mtot (t) :=

N∑
l=1

ek,ml (t).

Then we calculate a numerical order of convergence by

θk,ml (t) := log2
ek,ml (t)

e2k,2ml (t)
, l = 1, . . . , N ; θk,mtot (t) := log2

ek,mtot (t)

e2k,2mtot (t)
.

We measure ϕ
,l
:= mini,j,n{ϕnl,i,j}, l = 1, . . . , N , and ϕ̄ := maxi,j,n{ϕni,j} to verify

satisfaction of the IRP property. To verify the DDF property, we evaluate

ek,mdiv q(tn) := max
{
|h−1

x ∆x
−q

x,n
i+1/2,j + h−1

y ∆y
−q

y,n
i,j+1/2| : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ m− 1

}
.

5.1. Example 1: N = 2, numerical order of accuracy. We verify numeri-
cally the convergence rate of the IRP-LFCW scheme on Ω := (0, 1)× (0, 1) for N = 2
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Table 2
Example 2: L1 errors, numerical order, and CPU time for IRP-LFCW schemes at t = 1 . The

reference solution is computed with kref = 1280, mref = 320, for a total of 409600 cells.

k ×m ek,m1 θk,m1 ek,m2 θk,m1 ek,mtot θk,mtot cpu [s]

40× 10 3.352e-02 — 1.421e-02 — 4.774e-02 — 1.46
80× 20 1.829e-02 0.87 8.792e-03 0.69 2.708e-02 0.82 9.65
160× 40 8.590e-03 1.09 5.382e-03 0.71 1.397e-02 0.95 96.2
320× 80 4.645e-03 0.88 2.899e-03 0.89 7.545e-03 0.88 942.8

Table 3
Example 2: minimum of the solutions ϕn

l,i,j , l = 1, 2, and maximum of the solution ϕn
i,j obtained

by schemes LFCW and IRP-LFCW with k = 160, m = 40, until t = 1.15 .

θ ϕ
,1

ϕ
,2

ϕ̄ θ ϕ
,1

ϕ
,2

ϕ̄

LFCW

0◦ -3.98e-03 -1.92e-03 0.585346
IRP-
LFCW

0◦ 1.27e-31 3.69e-20 0.585263
10◦ -7.25e-03 -4.19e-03 0.600110 10◦ 6.34e-22 1.07e-17 0.599487
20◦ -1.61e-02 -7.13e-03 0.603366 20◦ 8.82e-20 1.08e-17 0.599877
30◦ -1.81e-02 -1.34e-02 0.603352 30◦ 4.29e-20 6.46e-18 0.599906

particle species with diameters d1 = 2.9×10−3 m and d2 = 2.0×10−3 m. The (smooth)
initial datum is Φ0(x, y) = (ϕ0(x, y), ϕ0(x, y))

T with kref = mref = 5 × 27. The ap-
proximate L1 errors and corresponding numerical orders for θ = 0◦ are displayed in
the upper two blocks of Table 1 for t = 0.01 (before shock formation) and t = 0.2
(after shock formation). The convergence rates for increasing values of k×m confirm
second-order accuracy of the IRP-LFCW scheme when the solution is still smooth.
In the lower two blocks of Table 1 we compare the behavior of the first-order IRP-LF
and the second-order IRP-LFCW schemes at t = 0.01 for θ = 10◦ and observe a
substantial improvement of accuracy of the IRP-LFCW scheme compared with the
IRP-LF scheme.

5.2. Example 2: N = 2, Boycott effect. Here and in Examples 3 and 4
we consider Ω = (0, 4) × (0, 1), and in this example N = 2 species with diameters
as in Example 1 and Φ0(x, y) = (0.06, 0.02)T. We vary the inclination angle by
θ = 0◦, 10◦, 20◦, 30◦ and set k = 320 and m = 40. In Figure 3 we observe an increase
in the settling efficiency for ϕ1, ϕ2, and ϕ, respectively, with increasing θ. In Table
2 we show approximate L1 errors and CPU time for the scheme at t = 0.01 . We
observe the convergence of method with order smaller than one due to the presence
of shocks in the numerical solutions. The quantities ϕ

,l
for l = 1, 2 and ϕ̄, with and

without the use of limiters, are presented in Table 3, until t = 1.15. For the scheme
without limiters it occurs that ϕ

,l
< 0 or ϕ̄ > ϕmax, while in the case of the scheme

with limiters the numerical solution remains within D for all θ, as expected.

5.3. Example 3: N = 2, Diehl test. We start from Φ0(x, y) = (0.12, 0.08)T

if 0 ≤ x ≤ 2 and Φ0(x, y) = (0, 0)T if 2 < x ≤ 4. We set an angle of inclination of
θ = 30◦ and k = 320 and m = 40. Figures 4 and 5 show the simulation of the Diehl
test at four time points. This process forms a characteristic “tongue” of mixture that
settles until all solids accumulate at the bottom. We also plot the flow vectors of
the fluid velocity, which illustrate the circulation effect. Moreover, we observe that
as the particles settle, an increase in pressure develops near the bottom due to the
growing concentration of sediment. Figure 6(a) shows the evolution of ∥q∥∞ over
time, illustrating the decrease in fluid velocity as the particles approach a steady-
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Fig. 3. Example 2: simulation of the settling of an initially homogeneous bi-disperse suspension
in vessels with various angles of inclination at simulated time t = 3.

Table 4
Example 3: L1 errors, numerical order, and CPU time for IRP-LFCW schemes at t = 0.01.

The reference solution is computed with kref = 1280, mref = 320, for a total of 409600 cells.

k ×m ek,m1 θk,m1 ek,m2 θk,m1 ek,mtot θk,mtot cpu [s]

20× 5 4.997e-03 — 3.132e-03 — 8.129e-03 — 2.158e-02
40× 10 3.512e-03 0.51 2.091e-03 0.58 5.603e-03 0.53 6.102e-02
80× 20 2.741e-03 0.35 1.572e-03 0.41 4.314e-03 0.37 5.057e-01
160× 40 2.081e-03 0.40 1.104e-03 0.51 3.186e-03 0.43 3.961

state solution. Then, to study the numerical L1 error we use m = 5×2k and k = 4m,
k = 0, . . . , 3, and employ a reference solution with kref = 1280, mref = 320. In Table 4
we show approximate L1 errors and CPU times at t = 0.01. Again we observe orders
of convergence smaller than one (for the same reason as in Example 2). The numerical
extrema ϕ

,l
for l = 1, 2 and ϕ̄ until t = 2.5 are displayed in Table 5. For the scheme

without limiters we observe some cases of ϕ
,l
< 0 or ϕ̄ > ϕmax, while for the scheme

with limiters the numerical solution remains in D.
5.4. Example 4 (N = 4). We consider N = 4 particle species with diameters

d1 = 290 × 10−5 m, d2 = 250 × 10−5 m, d3 = 200 × 10−5 m, d4 = 130 × 10−5 m, and
θ = 30◦. We choose Φ0(x, y) = (0.05, 0.05, 0.05, 0.05)T. The values ϕ

,l
for l = 1, 2 and

ϕ̄ are presented in Table 6 up to t = 3. In the case of the scheme without limiters, we
observe some instances of ϕ

,l
< 0 and ϕ̄ > ϕmax. On the contrary, for the scheme with

limiters, the numerical solution remains within D, as expected. We observe that the
scheme preserves the invariant region D regardless of the number of different particle
diameters N , as stated in Theorem 7. A key element in the proof is the DDF property
(3.10), which we verify numerically by computing ek,mdiv q at several times, see Table 7.
Finally, Figure 6(b) shows the time evolution of ∥q∥∞, illustrating the decrease in
fluid velocity as the particles approach a steady-state solution.

6. Conclusions. Many mathematical models impose some requirements for the
admissibility of their state variables that call for numerical methods that satisfy these
requirements, which usually come as invariant-region properties. In the case of mul-
tidimensional polydisperse sedimentation, with concentrations of each solid species
and bulk velocity as state variables, individual concentrations are bound to be non-
negative, the total solid concentration to be below a prescribed threshold, and the
bulk velocity to be divergence-free. We herein propose a FV/FD solver on rotated
Cartesian meshes for the coupled transport-flow model for two-dimensional polydis-



22 BARAJAS-CALONGE, BÜRGER, MULET, AND VILLADA

Table 5
Example 3: minimum of the solutions ϕn

l,i,j , l = 1, 2, and maximum of the solution ϕn
i,j obtained

by schemes LFCW (without limiters), IRP-LFCW (with limiters), until t = 2.5 .

k ×m ϕ
,1

ϕ
,2

ϕ̄ k ×m ϕ
,1

ϕ
,2

ϕ̄

LFCW

20× 5 -8.07e-03 -6.21e-03 0.503233
IRP-
LFCW

20× 5 0.000000 0.000000 0.502076
40× 10 -9.35e-03 -8.70e-03 0.566773 40× 10 0.000000 0.000000 0.566619
80× 20 -1.40e-02 -1.45e-02 0.590730 80× 20 0.000000 0.000000 0.591358
160× 40 -1.58e-02 -1.67e-02 0.606257 160× 40 0.000000 0.000000 0.600000
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Fig. 4. Example 3: numerical solution at simulated times (a) t = 0.1, (b) t = 0.5.

perse sedimentation that achieves second-order accuracy through central WENO re-
constructions of the solid concentration designed with a filtering (the application of
scaling limiters) to achieve the cited invariant-region property. The FD solver for
the bulk velocity provably yields velocity fields that are discretely divergence free
(DDF), an essential feature for the proof of the IRP property. The numerical results
reconfirm that the scheme has the advertised properties, and agree qualitatively with
experimental information (e.g., in [14]) on batch settling, in particular concerning
the formation of N layers of different composition in the bottom of the vessel with
nearly horizontal interfaces in conjunction with the upward-streaming layer of clear
liquid beneath the inclined upper wall (see Figures 3 and 7). Future work should aim
at comparing numerical simulations, with appropriate parameters, with experimental
data such as the observed descent of these interfaces (cf., e.g., [14, Fig. 4]).

While the numerical examples have been limited to the MLB model, we empha-
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Fig. 5. Example 3: numerical solution at simulated times (a) t = 1.0, (b) t = 1.5.
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Fig. 6. Examples 3 and 4: simulated evolution of ∥q∥∞ for (a) Example 3, (b) Example 4.

size that the properties utilized for the analysis in sections 3 and 4 are not specific
for that model but only rely on the generic assumptions of section 2.1. Other system-
atically constructed models could therefore replace the MLB model, if we consider
for instance liquid-liquid dispersions [30]. That said, the assumptions of section 2.1
were inspired by the authors’ previous work [1] where they are also verified for a
model of multiclass vehicular traffic [3] (not considered herein). A closer inspection
of the proof of Theorem 3 will reveal that these can possibly be relaxed, for example
to include hindrance factors Vi(ϕ) (instead of V (ϕ)) specific to each species. Such a
generalization would make the present approach applicable to additional models (e.g.,
those reviewed in [8], which include [12]; or the one proposed in [2]).

With respect to numerical schemes we first comment that the LLF scheme has
been chosen as a first-order scheme with IRP property because the proof of Theorem 3
takes a relatively simple form. Instead of the LLF numerical flux one could also employ
the Harten-Lax-van Leer (HLL) numerical flux [22], for which the IRP property is
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Fig. 7. Example 4: numerical solution at simulated time t = 3.

Table 6
Example 4: minimum of the solutions ϕn

l,i,j , l = 1, . . . , 4, and maximum of the solution ϕn
i,j

obtained by schemes LFCW (without limiters) and IRP-LFCW (with limiters) until t = 3 .

k ×m ϕ
,1

ϕ
,2

ϕ
,3

ϕ
,4

ϕ̄

LFCW

20× 5 -1.11e-03 -9.42e-04 -1.20e-03 6.25e-03 0.520070
40× 10 -4.45e-03 -3.03e-03 -1.53e-03 -1.03e-03 0.581633
80× 20 -7.05e-03 -7.33e-03 -5.70e-03 -2.88e-03 0.605112
160× 40 -8.96e-03 -1.13e-02 -9.75e-03 -1.07e-03 0.641303

IRP-LFCW

20× 5 9.56e-11 6.10e-09 1.77e-06 6.35e-03 0.520119
40× 10 2.62e-18 1.08e-16 3.55e-12 1.46e-06 0.581665
80× 20 8.56e-21 3.05e-19 4.47e-18 5.53e-12 0.599993
160× 40 5.80e-26 7.17e-23 3.75e-20 1.46e-17 0.600000

also proven in [1]; the proof is, however, slightly more involved than for the LLF
numerical flux. Furthermore, although rectangular domains allow us to simulate
configurations of theoretical and practical interest (besides the Boycott effect and
Diehl test, an inclined rectangular channel has been proposed as a continuous-flow
device for classification of polydisperse suspensions [13]), our limitation to rectangular
domains is essentially imposed by the FD Stokes solver that will be removed by using
DG schemes on unstructured meshes. It remains to be evaluated whether a DG
approach would allow for higher than second order of global accuracy.
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Current Problem via Potential Formulation with Current Excitation

2025-12 Abraham J. Arenas, Juan Barajas-Calonge, Gilberto González-Parra,
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